
Pharmaceutical innovation is increasingly 
risky, costly and at times inefficient, which 
has led to decreased industry productivity1–3. 
Estimates for the average cost of bringing 
a new drug to market range between $800 
million and $2 billion, in which late-stage 
failures and the rising costs of Phase II 
and III trials represent key components4–9. 
Conducting these phases of development 
more effectively and reducing attrition rates 
are therefore major goals. The problem of 
attrition is particularly acute in Phase II 
trials10, owing to factors such as the lack of 
proof of relevance for the biological target in 
a given disease intervention and insufficient 
understanding of the dose–response  
relationship of the new molecular entity.

As recognized by the US Food and Drug 
Administration (FDA) Critical Path Initiative, 
novel approaches to clinical trial and  
programme design could have a key role in 
overcoming these challenges. The traditional 
approach to drug development separates 

clinical development into sequential,  
distinct phases, in which progress is  
measured at discrete milestones, separated  
by ‘white space’. We argue that the effective-
ness of the clinical development can be 
improved by adopting a more integrated 
model that increases flexibility and maxi-
mizes the use of accumulated knowledge. 
In this model, broader, more flexible phases 
leading to submission for approval are 
designated ‘exploratory’ and ‘confirmatory’ 
(FIG. 1). This model is adaptive, parallel  
and data-led, and allows all available  
knowledge to be appropriately shared  
across the breadth of development studies  
to improve the quality, timeliness and  
efficiency of the process.

Central to this model of drug develop-
ment are novel tools, including modelling 
and simulation, Bayesian methodologies, and 
adaptive designs, such as seamless adaptive 
designs and sample-size re-estimation  
methods (BOX 1). These can ensure the 

judicious use of limited patient resources, 
reduce patient exposure to ineffective or 
poorly tolerated doses, and lead to the 
recruitment of patients who, on the basis 
of biomarker analysis, are most likely to 
respond and those with the most favourable 
benefit/risk ratio.

In this article, we describe the general 
issues and methods involved, and illustrate 
how the tools can be applied in both explora-
tory and confirmatory drug development by 
using specific cases in which modern trial 
designs and statistical approaches have been 
successful. We hope to raise awareness of 
these issues among those involved in clinical 
trials and provide guidelines to ensure that 
the most appropriate solutions are imple-
mented, with the ultimate goal of increasing 
the efficiency and probability of success in 
clinical development.

Exploratory phase of development
Modelling is a key feature of the more  
integrated approach to drug development 
(FIG. 1). Biological modelling is used to under-
stand genetic, biochemical and physiological 
networks, as well as pathways and processes 
underlying disease and pharmacotherapy11,12. 
Pharmacological modelling guides clinical 
trial design, dose selection and development 
strategies13,14. Finally, statistical modelling can 
be used to assess development strategies and 
trial designs in populations11,12,15. These three 
types of modelling should be used throughout 
the drug development process to maximize 
their impact and synergies.

In the exploratory phase, modelling and 
simulation can help refine dose selection  
and study design. Early development studies 
are conducted with fairly restricted resources 
(duration, sample sizes and so on), and the 
use of all available information is crucial 
for effective decision making16. However, 
it should be noted that early development 
decisions based on biomarkers that have 
not been fully qualified can be misguided if 
such biomarkers eventually do not prove to 
correlate with, or be predictive of, the final 
outcome. Accordingly, it is important to 
conduct methodology research in parallel  
to the development programme to establish 
the correlation between the biomarker and 
late-stage endpoints or outcomes.
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• Apply innovative tools and clinical 
 trial designs such as adaptive or 
 seamless studies
• Identify target patient population, 
 confirm optimal dose and 
 dosing regimen and establish the 
 benefit/risk ratio

• Apply biomarkers, modelling and 
 simulation, and advanced statistical 
 methodology
• Demonstrate PoC and establish 
 dose selection

Exploratory phase Confirmatory phase

Target discovery 
and validation PoC clinical trials Clinical development

Modelling and simulation approaches 
can be used to represent dose–response  
and time–response behaviour of safety and  
efficacy endpoints. Furthermore, these 
approaches can be combined with Bayesian 
methods to provide a continuous flow 
of information across different phases of 
development. For example, preclinical 
data can be used to construct models and 
to provide prior information on model 
parameters. likewise, the results from a 
proof-of-concept (PoC) study can be used to 
form prior distributions for a similar model 
to be used in a subsequent dose-finding 
study11,12,17,18.

An additional benefit of modelling in 
early development is that it allows the use of 
external information (for example, baseline 
values for safety endpoints) to estimate char-
acteristics of interest about the population. 
Given the vast quantity of data from other 
development programmes that are available 
in most pharmaceutical companies, as well 
as current discussions within the industry 
about sharing placebo data across compa-
nies, this has huge potential for improving  
the efficiency of investigation in early 
development.

Modelling and simulation for dose and 
dose regimen selection. An important goal 
of a drug development programme is the 
selection of a dose and dosing regimen that 
achieves the target clinical benefit while 

minimizing undesirable adverse effects. 
Biological and pharmacological modelling 
can be very useful in this context19,20. For 
example, we (J.O., J.P., M.B., P.G. and D.S.) 
have used such modelling in the dose selec-
tion for canakinumab (Ilaris; novartis), 
a monoclonal antibody that has recently 
been approved for the treatment of the rare 
genetic disease Muckle–Wells syndrome 
(FIG. 2). Clinical data on the relationship 
between activity of the therapeutic target 
(interleukin-1), markers of inflammation 
and remission of symptoms were captured 
in a mathematical model that was con-
tinuously adjusted to fit emerging data. 
Simulation was then used to propose a suit-
able dose and dosing regimen to achieve the 
desired response for the majority of patients 
— in this instance, an 80% probability that 
90% of patients would remain flare-free 
for 2 months. The data derived from this 
modelling exercise allowed for selection of 
a dosing regimen that was investigated and 
confirmed in a Phase III trial21 (clinical data 
on various dosing intervals provided the 
raw data for the modelling and simulation 
exercise that finalized the dose and regimen 
selection for Phase III). Similarly, model-
ling has been used to predict the impact  
of changing the dose or dosing regimen of  
a dipeptidyl peptidase Iv inhibitor that  
is being developed for the treatment  
of type 2 diabetes (see Supplementary 
information S1 (box)).

Bayesian modelling combined with use of 
external baseline data to improve efficacy and 
safety signal detection in early development. 
Early development studies for establish-
ing PoC often use small patient cohorts 
(10–20 subjects). These patients are typically 
observed for a relatively short period of time 
(several weeks) to evaluate early efficacy and 
safety signals, which are frequently meas-
ured on a continuous scale and observed 
several times over the duration of the study. 
However, the endpoints for the decision to 
proceed with development or not are typically 
based on a single time point (for example, 
change from baseline at the end of the study) 
and use dichotomized versions of the original  
variables to characterize responder and  
non-responder behaviour. An example of  
the latter is the transformation of continuous  
liver function test measurements (for example,  
alanine aminotransferase (AlT) and  
aspartate aminotransferase (AST)) into 
binary indicators (for instance, exceeding  
three times the upper limit of normal 
(Uln)). There are, therefore, two types of 
information loss that often occur in PoC 
studies: the dichotomization of continuous 
endpoints and a failure to use all of the  
available longitudinal measurements  
collected in the study22.

A typical design for efficacy and safety 
evaluation in a PoC study is to use cohorts  
in a dose-escalation algorithm. Cohorts  
are assigned, in sequence, to increasing 
doses until the maximum tolerated dose is 
reached, or unacceptable safety is observed 
for a given cohort. A new cohort is only 
allowed to start once acceptable safety  
signals are verified for all previous doses.  
At the end of the study, the goal is to  
either determine a dose range for further 
exploration in Phase IIb, or to conclude  
that no PoC can be established based on  
the efficacy–safety trade-off.

Because of small cohort sizes, only safety 
problems occurring in a relatively large per-
centage of patients can be reliably detected 
by dose-escalation procedures. likewise, 
only relatively strong efficacy signals can be 
detected with reasonable statistical power. 
The detection of safety and efficacy signals 
can be made more efficient in various ways: 
by drawing on data and information external 
to the trial, and by deploying longitudinal 
modelling approaches to make use of all 
available information. Furthermore, the utility  
of PoC studies within drug development 
programmes can be enhanced by incorpo-
rating the information obtained in them 
directly into later-phase trials11,12. Bayesian 
modelling techniques are particularly useful 

Figure 1 | A novel model for clinical development. During the exploratory phase of development, 
this model uses all available knowledge and tools, including biomarkers, modelling and simulation, as 
well as advanced statistical methodology. trials are designed to determine proof-of-concept (Poc) 
and to establish dose selection to a level of rigour that will enhance the likelihood of success in the 
confirmatory phase. During the confirmatory phase, modern designs, tools and knowledge are applied 
to larger-scale studies with the goal of identifying the target patient population in which the drug is 
efficacious, establishing the benefit/risk ratio and confirming the optimal dose and dosing regimen. 
During this phase, innovative clinical trial designs such as adaptive or seamless studies compress time-
lines, improve dose and regimen selection, and reduce the number of patients assigned to non-viable 
dosing regimens.
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in implementing these approaches. A PoC 
study in dyslipidaemia that illustrates the 
methods mentioned above is provided in 
Supplementary information S2 (box)).

Adaptive trial designs in early development. 
The core concept of adaptive trial design 
(also known as flexible design) is that it uses 
accumulating data to decide on how to  
modify aspects of the study mid-trial,  

in a pre-planned manner, without under-
mining the validity or integrity of the 
study23–26. Possible adaptations include 
adjustments to sample size, allocation of 
treatments, the addition or deletion of treat-
ment arms, inclusion and exclusion criteria 
for the study population, adjusting statistical 
hypotheses (such as non-inferiority or supe-
riority), and combining trials or treatment 
phases. Adaptive trials have the potential 

to translate into more ethical treatment of 
patients within trials, more efficient drug 
development and better use of available 
resources.

The standard approach to early develop-
ment programmes is to separate the trials 
for PoC, dose ranging and dose selection. 
Adaptive designs offer several benefits over 
the standard approach. For example, a PoC 
trial can be combined with a dose-ranging 
trial (BOX 2). This approach has distinct 
advantages, in that it reduces start-up costs 
and the time between trials, and potentially 
increases statistical power and improves 
estimates of dose–response. Adaptive 
designs can also enable trialists to work 
with more candidate doses without increasing  
sample size. This is important to reduce 
risk of failure in confirmatory trials, where 
it has been estimated that, industry-wide, 
45% of Phase III programmes do not have 
the optimum dose3. Adaptive dose-ranging 
studies are discussed further in BOX 3 
(REFS 27,28).

There are a number of requirements 
for successful implementation of adaptive 
trial designs23–26. Drug responses need to be 
rapidly observable relative to accrual rate; 
alternatively, good longitudinal models 
can be used to forecast endpoints in time 
to adapt dose assignments for future sub-
jects (assuming, of course, that the early 
measurements are good predictors of the 
late endpoint values). Adaptive trials also 
necessitate more up-front statistical work 
to model dose–response curves and to per-
form simulations — and many simulations 
are required to find the best combinations 
of sample size, the randomization ratio 
between placebo and drug, starting dose 
and number of doses. This in turn demands 
efficient programming to develop complex 
algorithms and fast computing platforms.

confirmatory phase of development
The primary goals of a confirmatory clinical  
trial are to ensure that the diagnostic or 
therapeutic intervention causes less harm 
than good (safety) and to efficiently and 
confidently find the actual effect size on 
the chosen primary outcome(s) within the 
identified patient population (efficacy). 
Optimization of trial design during con-
firmatory development holds the promise 
of greater success rates, improved efficiency, 
better detection of safety signals, compressed 
timelines, smaller overall programmes and 
lower attrition rates. A number of novel 
approaches to confirmatory development 
that can contribute to fulfilling this promise 
are highlighted below.

 Box 1 | tools, methods and designs for enhancing clinical development

Here, we summarize some of the key tools, methods and designs that can be incorporated into the 
drug development process.

Modelling and simulation 
These techniques are a cornerstone of the novel drug development model. In the exploratory 
phase, modelling and simulation can help refine dose selection and study design, and to represent 
dose–response and time–response behaviour of safety and efficacy endpoints. In combination 
with Bayesian methods, these can provide a continuous flow of information across different 
phases of development. Modelling in early development also enables the use of external 
information (an important issue in light of current discussions within the industry about sharing 
placebo data across companies), which could greatly increase the efficiency of investigations in 
early development.

In the confirmatory phase, simulation can clarify how different study designs affect the outcome 
and likelihood of success, thereby guiding development strategy. In the latter case, this is 
facilitated by pooling many sources of data both from prior studies of the drug and external data 
that might be an informative guide to achieve better decision-making. Furthermore, these 
techniques can be used not just during the trial-design process, but also mid-study through the 
use of adaptive trial designs.

Bayesian methodology 
This relies on the use of probability models to describe knowledge about parameters of interest 
(for example, the treatment effect of a drug in development). Bayesian inference uses principles 
from the scientific method to combine prior beliefs with observed data, producing enhanced, 
updated information (for reviews, see REFS 22,23). Using Bayesian methodologies, initial beliefs 
about the parameters are summarized in their prior distribution. Then, new data values are 
collected experimentally (for example, patient survival in an oncology trial) and the probability 
distribution of these values leads to the likelihood function (the observed evidence on the 
parameters). The two elements are then combined, using Bayes’ theorem, to produce the posterior 
distribution of the parameters — that is, the updated knowledge given the observed evidence.  
By contrast, frequentist methods rely solely on observed evidence for inferences, and typically do 
not formally take into account prior information.

Adaptive designs 
In adaptive trial designs, interim data from a trial is used to modify and improve the study design, 
in a pre-planned manner and without undermining its validity or integrity. In the exploratory 
setting, an adaptive trial can assign a larger proportion of the enrolled subjects to the treatment 
arms that are performing well, drop arms that are performing poorly, and investigate a wider range 
of doses so as to more effectively select doses that are most likely to succeed in the confirmatory 
phase. In the confirmatory phase, adaptive design can facilitate the early identification of 
efficacious treatments, decisions to drop poorly performing trial arms, determining whether the 
trial should be terminated for futility and making sample-size adjustments at interim time points 
to ensure that the trial is adequately powered. In some cases, it might even be possible to enrich 
the patient population by altering the eligibility criteria at an interim time point.

seamless designs 
Such designs combine, in a single trial, the objectives that are traditionally addressed in separate 
trials. A seamless adaptive design addresses objectives normally achieved through separate trials 
using data from all trial stages, such as seamless adaptive Phase II/III trials.

sample size re-estimation methods 
These provide the flexibility to either increase or decrease the sample size at an interim point in 
the trial. This is important in cases in which there is uncertainty about between-subject variance  
in the response or uncertainty about the clinically meaningful effect size at which to power the 
trial. These methods allow the study to begin with a certain sample size that can be increased or 
decreased at an interim point, and even allow for an efficacy-stopping boundary.
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Seamless adaptive designs. Efficiency of the 
drug development process can be increased 
through the use of seamless adaptive 
designs, which aim to combine objectives 
traditionally addressed in separate trials 
into a single trial25,29. A specific example is 
the seamless adaptive Phase II/III design 
addressing objectives normally achieved 
through separate Phase II and III trials. 
These trials are confirmatory in nature, 
as opposed to seamless adaptive trials in 
early development, which are essentially 
exploratory. The first stage of a seamless 
adaptive Phase II/III trial might be similar 
to a late-Phase II trial, with a control group 
and several treatment groups (for example, 
different dose levels of the same treatment). 
results are examined at the end of the first 
stage, and one or more of the treatment 

groups are selected to continue, along with 
the control group, into the trial’s second 
stage. The final analysis comparing the 
selected group(s) with the control will use 
data from the continuing groups from both 
stages of the trial.

There are three key potential advantages 
of seamless adaptive designs: a reduction 
in the duration of the clinical development 
programme, by eliminating the time lag that 
traditionally occurs between Phase II and 
III trials; greater efficiency from the use of 
data from both stages, which might mean 
that fewer patients are required to obtain 
the same quality of information; and earlier 
acquisition of long-term safety data, gathered 
through continued follow-up of patients 
from the first stage (see Supplementary 
information S3 (figure))25,29.

not all drug development programmes 
will be candidates for these designs. 
Feasibility considerations for use of these 
designs include the length of follow-up 
time for the endpoint used for selection 
compared with duration of enrolment. 
Shorter follow-up will be more conducive 
to a seamless adaptive design, whereas a 
relatively long endpoint follow-up period 
will tend to militate against using such a 
design. Development programmes that do 
not involve complex treatment regimens 
might therefore be better suited to such 
designs. Drug supply and drug packaging 
will be expected to be more challenging in 
this setting.

A number of logistical and regulatory 
actions must be fulfilled to avoid compro-
mising an adaptive trial. First, the actual 
algorithm for determining the adaptation 
to implement must be specified in advance. 
This is usually accomplished by creating a 
charter for the independent data monitoring 
committee charged with the responsibility  
of performing the unblinded interim analysis 
and communicating as appropriate with 
the sponsor. In addition, the sponsor must 
have developed in-house procedures to 
ensure that the algorithm is not transmitted 
throughout the company, and especially not 
to the study investigators.

To maintain trial integrity, the processes 
by which interim data are examined and 
selection decisions are made and imple-
mented must be considered very carefully. 
Current conventions that restrict knowledge 
of interim results in ongoing trials should 
be respected to avoid compromising the 
interpretability of trial results. In some cases 
the decision being made at the selection 
point of a seamless design will be one for 
which sponsor perspective might be relevant 
and which has traditionally been a sponsor 
responsibility, raising the question of sponsor  
involvement in the monitoring process.  
A distinction is sometimes made between 
seamless adaptive designs that are inferen-
tially seamless or operationally seamless. 
In inferentially seamless designs, which we 
describe here, the main analysis uses data 
from both stages of the trial. In operation-
ally seamless designs, the final analysis only 
uses data from patients enrolled after the 
selection decision. This may allow a broader 
investigation of the first-stage data involving 
sponsor personnel and decreases concerns 
about trial integrity; in addition, traditional 
non-adaptive statistical methodology nor-
mally suffices. Such designs may maintain 
the advantage of reducing ‘white space’, while 
losing the efficiency that results from using 

Figure 2 | Dose selection in the development of a therapeutic for Muckle–Wells syndrome. 
Muckle–Wells syndrome is a rare genetic disorder characterized by fever, urticaria, joint pain and 
malaise. A monoclonal antibody against interleukin-1β (IL-1 β), canakinumab, has been developed to 
treat this IL-1-dependent inflammatory disease. the antibody is delivered parenterally and binds to 
free IL-1β, driving it into the inactive complex and leading to remission of symptoms21. total IL-1β, 
which represents mainly the inactive complex, increases after dosing and can be measured. By the 
laws of mass action, the free and active form of IL-1β, which cannot be measured, must decrease. 
However, the reduction in free IL-1β results in a decrease in markers of inflammation, including 
c-reactive protein (which can be measured), and a remission of clinical signs and symptoms of disease. 
the clinical data on these relationships can be captured in a mathematical model, shown in the figure, 
which is continuously adjusted in the light of new data. this framework simulation could then be used 
to propose a suitable dose and dosing regimen that would be predicted to produce a desired response 
for the majority of patients (for example, an 80% probability that 90% of patients will be flare-free for 
2 months).
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data accrued in stages. regardless, operating  
procedures for the monitoring process in 
seamless designs must be carefully considered 
to ensure that the right expertise is applied 
to the decision, while limiting access to the 
accruing data as appropriate to maintain 
trial integrity.

Other considerations for adaptive designs 
include the endpoint used for selection.  
This need not be the same as the endpoint to 
be used in the main study analysis; if a good 
surrogate marker is available, this can be 
used and might enhance the efficiency of the 
seamless trial. Second, modelling and simula-
tion will probably have a very important role 
in developing the specific details of seamless 
designs (for example, per-group sample sizes 
in the different stages, considered under vari-
ous scenarios) to ensure that they are robust 
and efficient. Third, the final analysis must 
use statistical methodology that is appropriate 
for the design: ‘naive’ comparisons of control 
versus the selected treatment that do not 
account for the design will not be appropriate.  
Finally, the appropriateness of the design 
does not depend on any particular algorithm 
for choosing the patient group to be contin-
ued; it is not even necessary for a firm  
algorithm to be specified in advance, although 
the general principles that will govern the 
decision should be clear in advance.

Sample size re-estimation within a  
confirmatory trial (Phase III). Sample size 
re-estimation (SSr) provides a mechanism for 
appropriately using the information obtained 
during a confirmatory study to inform and 
adjust the necessary sample size going for-
ward30,31. This process increases confidence 
that an appropriate sample size has been  
chosen to answer the primary study questions.

The standard approach used to power a 
confirmatory study is to first estimate the 
underlying treatment effect on the primary 
endpoint based on available prior informa-
tion. The parameter δ denotes the true 
underlying difference between the treat-
ment and control arms with respect to the 
primary endpoint. Even though the true 
value of δ is unknown, the trial investigators 
will usually have in mind a specific value, 
δmin, which represents the smallest clinically 
important delta (SCID) for this clinical trial. 
next, the trial designers will determine the 
sample size that can detect values of δ, based 
on prior information, that exceed the SCID 
with good power. The standard deviation σ 
(between subject variability) is a ‘nuisance 
parameter’ whose true value must be  
estimated in order to proceed with the  
sample size calculation.

Box 2 | case study: combining poc and dose-ranging trials into a single adaptive trial

This example illustrates how a single adaptive trial can replace two standard trials — 
proof-of-concept (PoC) and dose-ranging — and that the combined trial has greater power than 
the standard PoC design, and is substantially better at estimating the dose–response curve.

The trial evaluated an analgesic drug to treat dental pain and tested seven doses of the drug. 
Several designs with different sample sizes, randomization ratios of drug to placebo and starting 
doses were simulated against several scenarios. Here, we describe one design with a sample 
size of 120 subjects (40 placebo, 80 drug). Bayesian adaptive trials were simulated over seven 
drug–response scenarios to enable comparisons with standard designs. Seven scenarios, which 
represent the gamut of probable dose–response curves were chosen as shown in panel a in the figure. 
In simulations, it was found that across all seven scenarios, a single adaptive trial can replace two 
standard trials (PoC and dose-ranging). The power of the trend test for PoC was always greater for the 
adaptive design, as shown in panel b. When there was a small dose–response effect (scenarios 2  
and 3), the power of the adaptive design was about double that of the standard design. When the effect 
size was modest (scenarios 4 and 5), the power was increased to practically 100%. When effect sizes 
were large (scenarios 6 and 7), the power was almost 100% for both adaptive and standard designs.

For the same total sample size, the adaptive combined PoC–dose-finding trial is more efficient 
than the two standard trials in estimating the response at every dose (see panel c). The continuous 
curve shows the efficiency of the adaptive design relative to the standard dose-ranging design for 
scenario 7. Efficiency at each dose is defined as the ratio of the square of the estimation error of the 
standard design to the square of the estimation error of the adaptive design. The bars show the 
number of subjects allocated to each dose by the adaptive design. These results are computed by 
averaging the results of 1,000 simulations.The overall efficiency across all doses is greater by a 
factor of five, whereas for the sloping part of the dose response curve (doses 4, 5 and 6) the adaptive 
design is three times more efficient. In panel d, the adaptive combined PoC–dose-ranging trial with 
60 subjects is as efficient in estimating the response at every dose as the two standard trials with a 
combined sample size of 120 subjects. It is also as powerful in testing for PoC.

These results are true irrespective of which of the seven scenarios reflects the true dose–response 
curve. For all seven scenarios for the same sample size, the efficiency of the adaptive design was 
about five times that of the standard design over all doses. It was three times that of the standard 
design for estimating dose–response in the sloping part of the dose–response curve. Another way to 
think about this result is that for half the sample size, the adaptive design is as powerful and efficient 
as the standard approach with two trials.
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The SCID can often be pre-specified 
from purely clinical arguments, whereas the 
actual effect size is unknown. Therefore, it is 
possible in principle to design a study with 
a fixed sample size that will have adequate 
power to detect the SCID, in the absence 
of adequate prior information about the 
actual effect size of the test agent. This is 
what statisticians envisaged when they 
created the fixed-sample methodology. 
However, this fixed sample methodology 
has several drawbacks. If the actual effect is 
substantially larger than the SCID, a smaller 
sample size would have sufficed to attain 
adequate power32.

Sponsors will not often risk significant 
resources on trial sizes based on SCID 
assumptions that would lead to larger trials 
than the current ‘best guess’ about the actual 
effect size (BOX 4). Instead, a smaller trial  
corresponding to that best guess may be run; 
if that assumption is too optimistic, and the 
truth is an effect size closer to the SCID,  
the trial will be underpowered and therefore 
have a high chance of failure.

One approach to solving the problem of 
uncertainty about δ is to design and execute 
an additional number of exploratory trials  
(typically Phase II studies). These small 
Phase II studies are normally carried out to 
get a more precise estimate (or best guess)  
of the actual δ and σ so that the confirma-
tory study might be adequately powered.  

Each exploratory trial, although somewhat 
smaller than confirmatory trials, still 
requires significant resources to perform 
appropriately. Also, the inevitable start-up 
time and wind-down activities between  
trials have to be included when determining 
true programme efficiency and develop-
ment timelines. This might therefore not 
be the most efficient way to proceed from 
the viewpoint of the entire clinical trial 
programme.

Advantages of adaptive SSR in confirmatory 
trials. A more flexible approach to the  
fixed sample-size methodology is needed.  
By altering the sample size using interim 
data from the trial itself, this flexibility can 
be achieved without compromising the 
power or the false-positive rate of the trial 
(that is, the chance of making a false claim 
of efficacy for a treatment that is not effica-
cious). SSr should be considered in two 
situations: when there is significant uncer-
tainty about σ; or when there is a substantial 
difference between the sample size resulting 
from using the SCID and the sample size the 
sponsor can justify on the basis of their best 
guess of the effect size29.

SSr usually involves the choice of a suitable 
initial sample size, including one or more 
interim analyses at which the sample size 
will be re-assessed30. There are two distinct 
strategies — the group sequential strategy 
and the adaptive SSr strategy — for choosing 
the initial sample size, and then altering it on 
the basis of data obtained at various interim 
analysis time points. The group sequential 
strategy, which is also an adaptive design, 
begins with a large up-front sample size 
commitment and cuts back if the accruing 
data suggest that the large sample size is not 
needed. The adaptive SSr strategy proceeds 
in the opposite direction, starting out with 
a smaller initial sample size commitment 
but with the option to increase it should the 
accruing data suggest that such an increase is 
warranted30–33 (BOX 5).

Extending the methodology to unknown σ. 
Although the group sequential and adap-
tive SSr methods were presented under the 

Box 3 | Adaptive dose finding

In an adaptive dose-finding study, the dose assignment(s) to the next subject, or next cohort of 
patients, is based on responses of previous subjects, and the dose assignment is chosen to maximize 
the information about the dose–response curve, according to some pre-defined objective metric 
(for example, variability in parameter estimates). In a traditional dose-finding trial, selecting a few 
doses may not adequately represent the dose–response relationship and many patients will be 
allocated to ‘non-informative’ doses (wasted doses), as shown in the figure. In adaptive dose-finding, 
the strategy is to initially include only a few patients on many doses to explore the dose–response, 
then to allocate the dose range of interest to more patients. This reduces the allocation of patients 
to non-informative doses27,28. Compared with fixed randomization, this approach has the ethical 
advantage that fewer subjects are assigned doses that are too high or too low. It can also avoid 
additional, separate trials that might be necessary when fixed dose-finding trials do not adequately 
define the dose range.

Adaptive dose-finding trials also require  
an infrastructure that allows the rapid 
communication of responses from trial sites to a 
central unblinded analysis centre and of adaptive 
dose assignments to the trial sites. Randomization 
software capable of rapidly computing dynamic 
allocation of doses to subjects is additionally 
mandated by adaptive trials because pre-specified 
randomization lists will not work. In addition,  
a flexible drug-supply process is required because 
demand for doses is not fixed in advance,  
but rather evolves as information on responses at 
various doses is gathered as the trial progresses.

 Box 4 | issues with the standard clinical development approach 

Issues with the standard approach to clinical development can be illustrated by considering a 
randomized clinical trial with the following assumptions. Based on available evidence from 
early-phase trials, it is estimated that σ = 1, that the anticipated effect size δ = 0.2 and that the 
smallest clinically important delta (SCID) is 0.1. Rather than conservatively enrolling a sample size 
required to demonstrate the SCID (4,000 subjects), the sponsor appropriately powers the trial to 
detect the estimated larger δ (1,000 subjects). Now, suppose that the true underlying value of δ is 
0.15. In that case, a sample size of 2,000 subjects would be required to adequately power the trial 
to detect this difference. The difficulty is, of course, that the true underlying value of δ is not 
known at the start of the trial. In this example, the 1,000-subject study would probably yield a 
non-significant result, as it is only powered to detect an effect size of 0.2, which is larger than the 
actual effect size of 0.15.

In this example, unless the 1,000-patient under-powered trial was repeated with a larger sample 
size, then a potentially efficacious treatment would be unnecessarily and unfortunately discarded. 
If the trial were to be repeated with the re-estimation of the actual effect size, then 2,000 patients 
would need to be enrolled, and the time and resources to perform the original trial (sometimes 
more than 3 years) would have been spent without much benefit other than gaining a more 
reliable estimate of the actual effect size in order to design the second trial. More importantly,  
the subjects for that study would have been put at unnecessary risk because the study had no real 
chance of being definitive.
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assumption that the standard deviation σ 
is known, they apply equally for the case 
of unknown σ30–32. One can start out with 
an initial estimate of σ and corresponding 
sample-size estimate. Then, following an 
interim analysis, one can re-estimate this 
nuisance parameter, input the updated esti-
mate into the equation and re-compute the 
sample size. An illustrative example is given 
in FIG. 3.

There are two ways to obtain the new 
sample size in the situation of unknown σ: 
blinded and unblinded. In the instance of 
blinded sample size re-estimation, the  
sponsor uses pooled data to estimate σ.  
This is permitted with no penalty to the 
analysis criteria (that is, alpha, or the  
probability of Type I (false positive) error). 
It is preferable that the sponsor pre-specifies 
how many times changes are to be made 
to the sample size, at what time points and 
how the new sample size will be calculated. 
Usually, this type of adjustment will not be 
permitted by regulatory authorities more 
than once.

For unblinded sample size re-estimation, 
the sponsor sets up a mechanism (possibly  
with the data monitoring committee of 
the trial) whereby the SSr is based on an 
unblinded estimate of variability (or statistical 
information) at the interim analysis. Sample 
size may be altered one or more times,  
but the maximum statistical information 
must be pre-specified.

If the sponsor agrees that there will  
be no early stopping for efficacy following  
an interim analysis, then no adjustment to 
the final analysis criteria is necessary.  
The data monitoring committee may  
monitor the data one or more times and 
adjust the sample size up or down based  
on the unblinded estimate of variability  
and attempt to reach the pre-specified  
maximum information.

When the sponsor pre-specifies the 
interim time points at which it is permis-
sible to terminate early for efficacy, the 
criteria for each interim analysis must be 
pre-specified in a manner that controls the 
false-positive rate across the entire study. 
This will result in adjustment to the final 
analysis criterion if the study is not stopped 
early. Interim looks undertaken solely for 
administrative purposes, with no inten-
tion of stopping the trial in light of efficacy 
data, do not need to have defined criteria. 
The trial then proceeds until either it is ter-
minated early for efficacy on the basis of the 
pre-defined criteria being reached, or until 
the planned maximum information (sample  
size or number of events) is reached.

 Box 5 | group-sequential and adaptive designs for sample size re-estimation

Group-sequential design. Suppose that the sponsor is unsure of the true value of δ, but nevertheless 
believes that it is larger than the smallest clinically important delta (SCID). In this case, a group-
sequential design might be considered. Such a design is characterized by a maximum sample size, 
an interim monitoring strategy and a corresponding boundary for early stopping for efficacy. 
The maximum sample size is computed so that the study has adequate power to detect a value  
of δ that the sponsor believes represents a reasonable estimate of the efficacy of the experimental 
compound, provided this estimate is at least as large as the SCID. If the sponsor wishes to be very 
conservative about this estimate, the maximum sample size needed can be computed to have 
adequate power at the SCID itself. An up-front commitment is made to enrol patients up to this 
maximum sample size. However, if the true δ exceeds the SCID, the trial may terminate earlier 
with high probability by crossing an early stopping boundary at an interim analysis.

Returning to the example discussed in BOX 4, suppose that the sponsor decides to make an 
up-front commitment of 4,000 patients to the trial but intends to monitor the accruing data up to 
four times, after 1,000, 2,000, 3,000 and 4,000 patients become evaluable for the primary endpoint. 
The commitment of 4,000 patients ensures that the trial will have 88% power to detect a 
difference as small as δ = 0.1 (in this case the SCID). Although this is a rather large sample size to 
commit to the trial, the actual sample size is expected to be substantially smaller if the true δ is 
larger than the SCID. This is because at each of the four interim monitoring time points there is a 
chance of early termination and a declaration of statistical significance. At each interim analysis,  
a test for statistical significance using all available primary endpoint data would be performed, 
and the result would be compared with a properly determined early-stopping boundary value. 
The trial could be terminated the first time that a boundary is reached, with a valid claim that the 
experimental arm is more efficacious than the control arm.

However, sometimes a sponsor might not be willing to make such a large up-front commitment, 
particularly when the only currently available data on δ are from one or two small Phase II trials. 
The sponsor might feel more comfortable with a design that starts out with a smaller sample size 
of, say, 1,000 patients, with the opportunity to increase the sample size at an interim time point 
and after observing data from the trial. This is the motivation for the adaptive design below.

The adaptive design. The group-sequential design described above is characterized by  
pre-specifying a maximum sample size up-front and terminating earlier if the true δ is larger than 
anticipated. By contrast, an adaptive design pre-specifies a smaller initial sample size, but with 
the possibility of increasing the commitment after seeing some interim data from the trial. On the 
surface, this is similar to the usual practice of first running a small Phase II trial to obtain an idea 
about efficacy and safety and then following it up with a larger Phase III trial once the efficacy and 
safety of the compound have been established. There is, however, an important distinction between 
the conventional Phase II followed by Phase III strategy and the adaptive strategy outlined below.

In the conventional approach, the data from the Phase II trial are not combined with the data 
from the Phase III trial. The adaptive design, however, uses all the data from both stages for the 
final analysis. This can have important advantages both in terms of gaining additional statistical 
power, as well as shortening the drug development time. In our example, we stated that the SCID 
was 0.1. Supposing that the sponsor believes that the true δ = 0.2 — that is, twice as large as the 
SCID — if this is indeed the case, then a total sample size of 1,000 patients will have 89% power at 
a one-sided α level of 0.025. On this basis, the sponsor is prepared to make an initial investment of 
1,000 patients to this trial. As an insurance policy, however, the sponsor intends to take an interim 
look at the accruing data at the mid-point of the trial, after 500 patients are evaluable for 
response. If the estimate of δ obtained from these 500 is smaller than the sponsor expected,  
then the sponsor might choose to increase the sample size to preserve the power of the trial.

Many different criteria can be used to decide whether an increase in sample size is warranted.  
A commonly used criterion is ‘conditional power’. The conditional power at an interim analysis is 
the probability, given the observed data, that the experimental compound will demonstrate 
efficacy on completion of the trial. The conditional power computation requires specifying a 
value for δ. One can choose the value specified at the initial design stage or the value estimated 
from the interim data. In this example, we use the interim estimated value of δ for evaluating 
conditional power. The table below displays conditional power for various estimated values of δ 
at the interim time point, along with the total sample size needed to achieve 80% conditional 
power at the final analysis. The entries in the table assume that σ = 1. 

interim 
estimate (d)

conditional power without 
sample size increase

Total sample size needed to achieve 
80% conditional power

0.2 95% 720 (sample size reduction)

0.175 86% 890 (sample size reduction)

0.15 72% 1,166 (sample size increase)

0.125 51% 1,757 (sample size increase)

0.1 30% 2,990 (sample size increase)
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= 0.375
= 90%
= 1.0
= 150
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σ
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= 0.375
= 90%
= 1.4
= 295

Learning

tackling challenges of new trial designs
Because they are so flexible, these new trial 
designs require significant statistical analyses, 
simulations and logistical considerations 
to verify their operating characteristics, 
and therefore tend to require more time 
for the planning and protocol development 
phase. regulatory agencies and Institutional 
review Boards also need to approve the 
design format for interim analysis, and these 
discussions can sometimes take considerable 
time. Such time considerations can lead a 
company to follow the traditional route to 
clinical development, without fully appre-
ciating the advantages that adaptive designs 
can eventually bring in terms of time and 
cost savings, and probability of success.

As described above, adaptive designs 
further require the following: quickly 
observable responses relative to the patient 
accrual rate or good longitudinal forecasting 
models; efficient design and implementa-
tion software and fast computing platforms; 
an infrastructure that facilitates rapid 
communication across trial sites to the 
central unblinded analysis centre and rapid 
communication of dose assignments to trial 
sites; and a flexible drug-supply process. 
Appropriate models, which reliably charac-
terize the longitudinal behaviour of clinical  
endpoints, or the relationship between 
biomarkers and endpoints, are also crucial 
to the success of the modern clinical devel-
opment paradigm discussed here. Because 
model assumptions often need to be 
checked — and at times revised — after data 
have been observed, an intriguing possibility 
is to use ‘adaptive modelling’ approaches. 
This is a topic for further research, and is 
beyond the scope for this paper.

Maximizing the use of all potential prior 
information requires greater collaboration  
across functional silos in organizations  
to avoid compartmentalization of data.  
In practice, the inclusion of a broader sample 
of datasets can be difficult because of a lack of 
common data standards. These problems are 
compounded by competitive hurdles to sharing  
what is considered proprietary information 
about novel therapies without PoC, which 
inhibits the exchange of data. Overcoming 
internal resistance and aversion to change also 
represents a major hurdle for incorporating 
the prospective use of novel trial designs and 
methodologies, and modelling and simula-
tion, into clinical development programmes.

A key challenge for the implementation of 
tools and techniques which advance the quality, 
timeliness and efficiency of drug develop-
ment is the ability to work across disciplines 
and amongst stakeholders to understand how 
and when to apply these solutions. To address 
this challenge, we make the following recom-
mendations. First, a common vocabulary 
and a common understanding of the value of 
modern trial designs to all stakeholders needs 
to be defined and disseminated. Second, at 
the same time, guidelines and case studies for 
assessing situations in which tools should be 
applied, as well as for those scenarios when 
they should not be utilized, should be devel-
oped and disseminated. Third, there is a need 
to create a methodology for dialogue with 
regulatory authorities to facilitate discussion 
of clinical strategies which utilize these tools 
and address potential constraints and issues. 
Finally, it will be crucial to identify specific 
solutions to address all mindset obstacles and 
factual objections that inhibit the adoption of 
modern tools and adaptive study designs.
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